Gluing methods in almost-Kähler geometry

Caroline Vernier

Laboratoire de Mathématiques Jean Leray, Nantes

PhD reviewers: Claudio Arezzo and George Marinescu	PhD advisors:	Yann Rollin and Gilles Carron
	PhD reviewers:	Claudio Arezzo and George Marinescu
Defense examiners: Vestislav Apostolov, Olivier Biquard, Philippe Eyssidieux and	Defense examiners:	
Paul Gauduchon		Paul Gauduchon
Invited examiner: Julien Keller	Invited examiner:	Julien Keller

Contents

1 Calabi's program.

- 2 Gluing in Kähler geometry: an overview.
- 3 In the almost-Kähler framework.
- 4 Hamiltonian stationary spheres.

└─Calabi's program.

1 Calabi's program.

2 Gluing in Kähler geometry: an overview.

3 In the almost-Kähler framework.

4 Hamiltonian stationary spheres.

└─Calabi's program.

Question: Given a smooth compact manifold, is there a 'privileged' Riemannian metric ?

Question: Given a smooth compact manifold, is there a 'privileged' Riemannian metric ?

Inspiration: Uniformization theorem for Riemann surfaces

Let (Σ^2, J) be a compact Riemann surface. There is a Riemannian metric g on Σ compatible with J, with constant Gauss curvature. Moreover, this metric is unique (up to isometries) if we set $Vol_g(\Sigma) = 1$. **Question:** Given a smooth compact manifold, is there a 'privileged' Riemannian metric ?

Inspiration: Uniformization theorem for Riemann surfaces

Let (Σ^2, J) be a compact Riemann surface. There is a Riemannian metric g on Σ compatible with J, with constant Gauss curvature. Moreover, this metric is unique (up to isometries) if we set $Vol_g(\Sigma) = 1$.

- Framework: (almost)-Kähler manifolds
- 'Privileged' metrics = constant scalar curvature metrics in a fixed Kähler class.

└─Calabi's program.

The existence problem is a difficult one:

The existence problem is a difficult one:

- Obstructions related to the existence of holomorphic vector fields.
- Tian-Yau-Donaldson conjecture: hamiltonian action on the space of (almost-)complex structures compatible with the Kähler form. The moment map is then the (normalized) scalar curvature s(ω) - s̄.
- Recent works by Chen and Cheng.

The existence problem is a difficult one:

- Obstructions related to the existence of holomorphic vector fields.
- Tian-Yau-Donaldson conjecture: hamiltonian action on the space of (almost-)complex structures compatible with the Kähler form. The moment map is then the (normalized) scalar curvature s(ω) - s̄.
- Recent works by Chen and Cheng.

Gluing methods are a way of obtaining explicit examples. Examples: Works of Arezzo and Pacard, Szekelyhidi. Gluing in Kähler geometry: an overview.

1 Calabi's program.

2 Gluing in Kähler geometry: an overview.

3 In the almost-Kähler framework.

4 Hamiltonian stationary spheres.

Gluing methods in almost-Kähler geometry Gluing in Kähler geometry: an overview.

Building block 1: Orbifold

 (M, J_M, ω_M) a compact Kähler orbifold, with a single isolated singularity p modelled on \mathbb{C}^m/Γ , where $\Gamma \subset U(m)$ only fixes 0.

Building block 1: Orbifold

 (M, J_M, ω_M) a compact Kähler orbifold, with a single isolated singularity p modelled on \mathbb{C}^m/Γ , where $\Gamma \subset U(m)$ only fixes 0. Asumptions:

• (M, J_M) admits no non-trivial holomorphic vector field;

Building block 1: Orbifold

 (M, J_M, ω_M) a compact Kähler orbifold, with a single isolated singularity p modelled on \mathbb{C}^m/Γ , where $\Gamma \subset U(m)$ only fixes 0. Asumptions:

- (M, J_M) admits no non-trivial holomorphic vector field;
- (M, J_M, ω_M) has constant scalar curvature.

Building block 1: Orbifold

 (M, J_M, ω_M) a compact Kähler orbifold, with a single isolated singularity p modelled on \mathbb{C}^m/Γ , where $\Gamma \subset U(m)$ only fixes 0. Asumptions:

• (M, J_M) admits no non-trivial holomorphic vector field;

•
$$(M, J_M, \omega_M)$$
 has constant scalar curvature.

From the Kähler property, we have holomorphic coordinates around *p*:

$$\underline{z}: p \ni U \to U' \subset \mathbb{C}^m/\Gamma$$

such that

$$\omega_M = \omega_{eucl} + O(|\underline{z}|^2).$$

Gluing methods in almost-Kähler geometry Gluing in Kähler geometry: an overview.

Building block 2: ALE manifold

Let (X, J_X, ω_X) be an Asymplotically Locally Euclidean resolution (ALE) of \mathbb{C}^m/Γ .

Building block 2: ALE manifold

Let (X, J_X, ω_X) be an Asymplotically Locally Euclidean resolution (ALE) of \mathbb{C}^m/Γ .

From the ALE property, we have holomorphic coordinates outside a compact:

$$\underline{u}:X\setminus K\to (\mathbb{C}^m\setminus B(0,R))/\Gamma$$

such that

$$\omega_X = \omega_{eucl} + O(|\underline{u}|^{2-2m}).$$

Building block 2: ALE manifold

Let (X, J_X, ω_X) be an Asymplotically Locally Euclidean resolution (ALE) of \mathbb{C}^m/Γ .

From the ALE property, we have holomorphic coordinates outside a compact:

$$\underline{u}:X\setminus K\to (\mathbb{C}^m\setminus B(0,R))/\Gamma$$

such that

$$\omega_X = \omega_{eucl} + O(|\underline{u}|^{2-2m}).$$

We assume that (X, J_X, ω_X) has zero scalar curvature.

The 'connected sum'

Using these coordinates, we identify a small 'ring' around $p \in M$ to a large region in X via a homothety.

Thus we obtain a *complex* smooth manifold M_{ε} .

The 'connected sum'

Using these coordinates, we identify a small 'ring' around $p \in M$ to a large region in X via a homothety.

Thus we obtain a *complex* smooth manifold M_{ε} .

We endow it with a Kähler form by joining Kähler potentials for ω_M and ω_X by cut-off functions.

The 'connected sum'

Using these coordinates, we identify a small 'ring' around $p \in M$ to a large region in X via a homothety.

Thus we obtain a *complex* smooth manifold M_{ε} .

We endow it with a Kähler form by joining Kähler potentials for ω_M and ω_X by cut-off functions.

Then, the problem is to find $f\in\mathcal{C}^\infty(M_arepsilon)$ such that

$$s(\omega_{\varepsilon}+dd^{c}f)=\lambda.$$

1 Calabi's program.

2 Gluing in Kähler geometry: an overview.

3 In the almost-Kähler framework.

4 Hamiltonian stationary spheres.

Definition

An almost-Kähler manifold is a symplectic manifold (V, ω) endowed with a compatible almost-complex structure J. We denote \mathcal{AC}_{ω} the set of almost-complex structures on V that are compatible with ω .

Definition

An *almost-Kähler* manifold is a symplectic manifold (V, ω) endowed with a compatible almost-complex structure J.

We denote \mathcal{AC}_{ω} the set of almost-complex structures on V that are compatible with ω .

Previous works extending the Calabi program to almost-Kähler manifolds:

- Lejmi, Keller and Lejmi: study of Calabi's functional, Futaki's invariant
- Weinkove: Calabi-Yau equation.

Definition

An *almost-Kähler* manifold is a symplectic manifold (V, ω) endowed with a compatible almost-complex structure J.

We denote \mathcal{AC}_{ω} the set of almost-complex structures on V that are compatible with ω .

Previous works extending the Calabi program to almost-Kähler manifolds:

- Lejmi, Keller and Lejmi: study of Calabi's functional, Futaki's invariant
- Weinkove: Calabi-Yau equation.

Question: Could we use gluing methods to obtain privileged metrics on almost-Kähler manifolds ?

We use more general ALE models (X, J_X, ω_X) :

 $\underline{u}:X\setminus K\to \mathbb{C}^m/\Gamma$

diffeomorphism outside a compact set, such that

$$\omega_X = \omega_{eucl} + O(|\underline{u}|^{2-2m})$$
$$J_X = J_{eucl} + O(|\underline{u}|^{2-2m}).$$

In other words, we consider *complex deformations* of resolutions.

We use more general ALE models (X, J_X, ω_X) :

 $\underline{u}:X\setminus K\to \mathbb{C}^m/\Gamma$

diffeomorphism outside a compact set, such that

$$\omega_X = \omega_{eucl} + O(|\underline{u}|^{2-2m})$$
$$J_X = J_{eucl} + O(|\underline{u}|^{2-2m}).$$

In other words, we consider *complex deformations* of resolutions.

Such non-trivial resolutions only exist in complex dimension 2 (Hein, Radeasconu, Suvaina).

Building blocks

• (M, J_M, ω_M) a constant scalar curvature Kähler orbifold surface, with a single singularity p modelled on $\mathbb{C}^2/\mathbb{Z}_2$. We assume (M, J_M) admits no nontrivial holomorphic vector field.

Building blocks

(M, J_M, ω_M) a constant scalar curvature Kähler orbifold surface, with a single singularity p modelled on C²/Z₂. We assume (M, J_M) admits no nontrivial holomorphic vector field.
 (X ≃ T*S², J_X, ω_X) ALE Kähler surface asymptotic to C²/Z₂.

Building blocks

(M, J_M, ω_M) a constant scalar curvature Kähler orbifold surface, with a single singularity p modelled on C²/Z₂. We assume (M, J_M) admits no nontrivial holomorphic vector field.
 (X ≃ T*S², J_X, ω_X) ALE Kähler surface asymptotic to C²/Z₂. We explicitly obtain the ALE metric by solving Ric(dd^cφ) = 0, with φ = f(|z|²), on smoothings

$$\{z_1^2+z_2^2+z_3^2=\varepsilon\}\subset\mathbb{C}^3$$

of

$$\mathbb{C}^2/\mathbb{Z}_2 \simeq \{z_1^2 + z_2^2 + z_3^2 = 0\}.$$

The Riemannian metric g_X thus derived is Eguchi-Hanson's. The complex structure inherited from \mathbb{C}^3 verifies

$$J_X - J_{eucl} = O(|u|^{-4}).$$

Generalized connected sum.

We work in Darboux charts.

 On the orbifold: an equivariant version of Darboux's theorem near p gives

$$\underline{x}: p \ni U \to U' \subset \mathbb{C}^2/\mathbb{Z}_2$$

such that ω_M coincides with ω_{eucl} . Moreover

$$J_M = J_{eucl} + O(|\underline{x}|^2).$$

Generalized connected sum.

We work in Darboux charts.

 On the orbifold: an equivariant version of Darboux's theorem near p gives

$$\underline{x}: p \ni U \to U' \subset \mathbb{C}^2/\mathbb{Z}_2$$

such that ω_M coincides with ω_{eucl} . Moreover

$$J_M = J_{eucl} + O(|\underline{x}|^2).$$

 On the ALE surface: Performing an explicit change of variables, we get

$$\underline{u}: X \setminus K \to (\mathbb{C}^2 \setminus B(0, R))/\mathbb{Z}_2$$

such that ω_X coincides with ω_0 . Moreover, we recover

$$J_X - J_{eucl} = O(|\underline{u}|^{-4}).$$

Using these charts to perform the connected sum construction gives us a family of *symplectic* manifolds $(M_{\varepsilon}, \omega_{\varepsilon})$.

Using these charts to perform the connected sum construction gives us a family of *symplectic* manifolds $(M_{\varepsilon}, \omega_{\varepsilon})$.

Remarks:

1 The $(M_{\varepsilon}, \omega_{\varepsilon})$ are all symplectically equivalent to the same $(\tilde{M}, \tilde{\omega})$;

Using these charts to perform the connected sum construction gives us a family of *symplectic* manifolds $(M_{\varepsilon}, \omega_{\varepsilon})$.

Remarks:

- 1 The $(M_{\varepsilon}, \omega_{\varepsilon})$ are all symplectically equivalent to the same $(\tilde{M}, \tilde{\omega})$;
- 2 The zero section of $X \simeq T^*S^2$ provides a Lagrangian sphere S in $(\tilde{M}, \tilde{\omega})$.

We want to

- = endow M_{ε} with an almost complex structure compatible with ω_{ε} .
- perturb this structure into a 'canonical' one.

Almost complex structures on $(M_{\varepsilon}, \omega_{\varepsilon})$.

We use the following description of \mathcal{AC}_{ω} on a symplectic manifold (V, ω) .

Theorem

Let (V, ω) be a symplectic manifold. We set

$$\operatorname{End}(TV,\omega) = \{a \in \operatorname{End}(TV), \, \omega(aX,Y) + \omega(X,aY) = 0\},\$$

the Lie algebra of automorphisms of TV that preserve ω . Then, if $J_1, J_2 \in \mathcal{AC}_{\omega}$, there exists $a \in \mathcal{C}^{\infty}(\operatorname{End}(TV, \omega))$ such that

$$J_2 = \exp(a)J_1\exp(-a).$$

Using this description and suitable cut-off functions, we get an a.c.s. $J_{r_{\varepsilon}}$ on M, compatible with ω_M , such that

$$J_{r_{\varepsilon}} = \begin{cases} J_0 \text{ on } \{|\underline{x}| \leq 2r_{\varepsilon}\} \\ J_M \text{ on } \{|\underline{x}| \geq 4r_{\varepsilon}\} \end{cases}$$

Using this description and suitable cut-off functions, we get an a.c.s. $J_{r_{e}}$ on M, compatible with ω_{M} , such that

$$J_{r_{\varepsilon}} = \begin{cases} J_0 \text{ on } \{|\underline{x}| \leq 2r_{\varepsilon}\} \\ J_M \text{ on } \{|\underline{x}| \geq 4r_{\varepsilon}\} \end{cases}$$

• an a.c.s. $J_{R_{\varepsilon}}$ on X, compatible with ω_X , such that

$$J_{R_{\varepsilon}} = \begin{cases} J_X \text{ on } \{ |\underline{u}| \leq R_{\varepsilon} \} \\ J_0 \text{ on } \{ |\underline{u}| \geq 2R_{\varepsilon} \} \end{cases}$$

Gluing those together, we obtain an almost-Kähler manifold $(M_{\varepsilon}, \omega_{\varepsilon}, J_{\varepsilon}, g_{\varepsilon})$.

Using this description and suitable cut-off functions, we get an a.c.s. $J_{r_{e}}$ on M, compatible with ω_{M} , such that

$$J_{r_{\varepsilon}} = \begin{cases} J_0 \text{ on } \{|\underline{x}| \leq 2r_{\varepsilon}\} \\ J_M \text{ on } \{|\underline{x}| \geq 4r_{\varepsilon}\} \end{cases}$$

• an a.c.s. $J_{R_{\varepsilon}}$ on X, compatible with ω_X , such that

$$J_{R_{\varepsilon}} = \begin{cases} J_X \text{ on } \{ |\underline{u}| \leq R_{\varepsilon} \} \\ J_0 \text{ on } \{ |\underline{u}| \geq 2R_{\varepsilon} \} \end{cases}$$

Gluing those together, we obtain an almost-Kähler manifold $(M_{\varepsilon}, \omega_{\varepsilon}, J_{\varepsilon}, g_{\varepsilon})$.

Remarks:

1 J_{ε} is not integrable, but $N_{J_{\varepsilon}}$ is supported in the gluing region $\{r_{\varepsilon} \leq |\underline{x}| \leq 4r_{\varepsilon}\}$, and controlled in suitable norms by a positive power of ε .

2 The Lagrangian sphere S_{ε} is minimal for g_{ε} .

Problem: For $f \in \mathcal{C}^{\infty}(M_{\varepsilon})$, the form

$$\omega_f := \omega_\varepsilon + dJ_\varepsilon df$$

is not $J_{arepsilon}$ -invariant.

Problem: For $f \in \mathcal{C}^{\infty}(M_{\varepsilon})$, the form

$$\omega_f := \omega_\varepsilon + dJ_\varepsilon df$$

is not $J_arepsilon$ -invariant.

Solution: Fix ω_{ε} and move J_{ε} in $\mathcal{AC}_{\omega_{\varepsilon}}$.

Problem: For $f \in \mathcal{C}^{\infty}(M_{\varepsilon})$, the form

$$\omega_f := \omega_\varepsilon + dJ_\varepsilon df$$

is not $J_arepsilon$ -invariant.

Solution: Fix ω_{ε} and move J_{ε} in $\mathcal{AC}_{\omega_{\varepsilon}}$. To $f \in \mathcal{C}^{\infty}(M_{\varepsilon})$, we associate the Hamiltonian vector field X_{f} .

Problem: For $f \in \mathcal{C}^{\infty}(M_{\varepsilon})$, the form

$$\omega_f := \omega_\varepsilon + dJ_\varepsilon df$$

is not $J_arepsilon$ -invariant.

Solution: Fix ω_{ε} and move J_{ε} in $\mathcal{AC}_{\omega_{\varepsilon}}$. To $f \in \mathcal{C}^{\infty}(M_{\varepsilon})$, we associate the Hamiltonian vector field X_f . Then, $a_f := \mathcal{L}_{X_f} J_{\varepsilon} \in \mathcal{C}^{\infty}(\operatorname{End}(TM_{\varepsilon}, \omega_{\varepsilon}))$

Problem: For $f \in \mathcal{C}^{\infty}(M_{\varepsilon})$, the form

$$\omega_f := \omega_\varepsilon + dJ_\varepsilon df$$

is not $J_arepsilon$ -invariant.

Solution: Fix ω_{ε} and move J_{ε} in $\mathcal{AC}_{\omega_{\varepsilon}}$. To $f \in \mathcal{C}^{\infty}(M_{\varepsilon})$, we associate the Hamiltonian vector field X_f . Then, $a_f := \mathcal{L}_{X_f} J_{\varepsilon} \in \mathcal{C}^{\infty}(\operatorname{End}(TM_{\varepsilon}, \omega_{\varepsilon}))$ and we set

$$J_f := \exp(-a_f) J_{\varepsilon} \exp(a_f).$$

We want to solve

$$s^{\nabla}(J_f) = s_M + \lambda, \tag{1}$$

where s^{∇} is the Hermitian scalar curvature of $(M_{\varepsilon}, J_f, \omega_{\varepsilon})$.

We want to solve

$$s^{\nabla}(J_f) = s_M + \lambda, \tag{1}$$

where s^{∇} is the Hermitian scalar curvature of $(M_{\varepsilon}, J_f, \omega_{\varepsilon})$.

The Hermitian Ricci curvature $\rho^{\nabla}(J_f)$ is the curvature of the Chern connection on the anticanonical bundle $K_{J_f}^*$;

We want to solve

$$s^{\nabla}(J_f) = s_M + \lambda, \tag{1}$$

where s^{∇} is the Hermitian scalar curvature of $(M_{\varepsilon}, J_f, \omega_{\varepsilon})$.

- The Hermitian Ricci curvature $\rho^{\nabla}(J_f)$ is the curvature of the Chern connection on the anticanonical bundle $K_{J_f}^*$;
- The Hermitian scalar curvature is its trace $s^{\nabla}(J_f) = \Lambda \rho^{\nabla}(J_f)$.

We want to solve

$$s^{\nabla}(J_f) = s_M + \lambda, \tag{1}$$

where s^{∇} is the Hermitian scalar curvature of $(M_{\varepsilon}, J_f, \omega_{\varepsilon})$.

- The Hermitian Ricci curvature $\rho^{\nabla}(J_f)$ is the curvature of the Chern connection on the anticanonical bundle $K_{J_f}^*$;
- The Hermitian scalar curvature is its trace $s^{\nabla}(J_f) = \Lambda \rho^{\nabla}(J_f)$.

The equation (1) is a fourth order PDE on f.

Gluing methods in almost-Kähler geometry └─ In the almost-Kähler framework.

Strategy.

We imitate the proof of the Inverse Function Theorem. We linearise:

$$L_{\varepsilon}(f) := \frac{d}{dt}|_{t=0} s^{\nabla}(J_{tf}),$$

thus

$$s^{
abla}(J_f) = s^{
abla}(J_{arepsilon}) + L_{arepsilon}(f) + Q_{arepsilon}(f).$$

Strategy.

We imitate the proof of the Inverse Function Theorem. We linearise:

$$L_{\varepsilon}(f) := \frac{d}{dt}|_{t=0} s^{\nabla}(J_{tf}),$$

thus

$$s^{\nabla}(J_f) = s^{\nabla}(J_{\varepsilon}) + L_{\varepsilon}(f) + Q_{\varepsilon}(f).$$

The linearised operator is given by

$$\begin{split} \mathcal{L}_{\varepsilon}f &= -\Delta_{g_{\varepsilon}}^{2}f + 2\delta_{g_{\varepsilon}}\mathsf{Ric}_{g_{\varepsilon}}(\mathsf{grad}_{g_{\varepsilon}}f, \cdot) + \mathcal{E}_{\varepsilon}f \\ &= \mathbb{L}_{M_{\varepsilon}}f + \mathcal{E}_{\varepsilon}f, \end{split}$$

where \mathbb{L} is the *Lichnerowicz operator* on M_{ε} , and the error term E_{ε} is small in suitable norms, with coefficients comparable to the Nijenhuis tensor $N_{J_{\varepsilon}}$.

The equation $s^{\nabla}(J_f) = s_M + \lambda$ thus rewrites

$$L_{\varepsilon}(f) + \lambda = s_{\mathcal{M}} - s^{\nabla}(J_{\varepsilon}) - Q_{\varepsilon}(f).$$

The equation $s^{\nabla}(J_f) = s_M + \lambda$ thus rewrites

$$L_{\varepsilon}(f) + \lambda = s_{\mathcal{M}} - s^{\nabla}(J_{\varepsilon}) - Q_{\varepsilon}(f).$$

We need to:

The equation $s^{
abla}(J_f) = s_M + \lambda$ thus rewrites

$$L_{\varepsilon}(f) + \lambda = s_{\mathcal{M}} - s^{\nabla}(J_{\varepsilon}) - Q_{\varepsilon}(f).$$

We need to:

1 Build a right inverse $\tilde{L}_{\varepsilon}(f,\lambda) = L_{\varepsilon}f + \lambda$ in suitable Banach spaces,

The equation $s^
abla(J_f) = s_M + \lambda$ thus rewrites

$$L_{\varepsilon}(f) + \lambda = s_M - s^{\nabla}(J_{\varepsilon}) - Q_{\varepsilon}(f).$$

We need to:

- 1 Build a right inverse $\tilde{L}_{\varepsilon}(f,\lambda) = L_{\varepsilon}f + \lambda$ in suitable Banach spaces,
- 2 Obtain an estimate of $s^{\nabla}(J_{\varepsilon}) s_{\mathcal{M}}$,

The equation $s^{
abla}(J_f) = s_M + \lambda$ thus rewrites

$$L_{\varepsilon}(f) + \lambda = s_M - s^{\nabla}(J_{\varepsilon}) - Q_{\varepsilon}(f).$$

We need to:

- 1 Build a right inverse $\tilde{L}_{\varepsilon}(f,\lambda) = L_{\varepsilon}f + \lambda$ in suitable Banach spaces,
- 2 Obtain an estimate of $s^{\nabla}(J_{\varepsilon}) s_M$,
- 3 Control the non-linear term Q_{ε} .

Gluing methods in almost-Kähler geometry └─ In the almost-Kähler framework.

Right inverse of the linearisation.

Idea: Compare \tilde{L}_{ε} to the model operators:

Right inverse of the linearisation.

Idea: Compare \tilde{L}_{ε} to the model operators:

• \tilde{L}_{M^*} : $(f, \lambda) \mapsto \mathbb{L}_{M^*}f + \lambda$ on the punctured manifold $M^* = M \setminus \{p\};$

Right inverse of the linearisation.

Idea: Compare \tilde{L}_{ε} to the model operators:

- $\tilde{L}_{M^*}: (f, \lambda) \mapsto \mathbb{L}_{M^*}f + \lambda$ on the punctured manifold $M^* = M \setminus \{p\};$
- $\mathbb{L}_X : f \mapsto \mathbb{L}_X f$ on the ALE surface X.

Right inverse of the linearisation.

Idea: Compare \tilde{L}_{ε} to the model operators:

- $\tilde{L}_{M^*}: (f, \lambda) \mapsto \mathbb{L}_{M^*}f + \lambda$ on the punctured manifold $M^* = M \setminus \{p\};$
- $\mathbb{L}_X : f \mapsto \mathbb{L}_X f$ on the ALE surface X.

These operators are defined on *noncompact* manifolds: in terms of regularity property, they do not behave well in usual Hölder spaces $\mathcal{C}^{k,\alpha}(M^*)$, $\mathcal{C}^{k,\alpha}(X)$ (ex: Schauder estimates are lost).

Gluing methods in almost-Kähler geometry └─ In the almost-Kähler framework.

Weighted Hölder spaces

Therefore, we use weighted Hölder spaces $C^{k,\alpha}_{\delta}$ defined so that:

Gluing methods in almost-Kähler geometry Lin the almost-Kähler framework.

Weighted Hölder spaces

Therefore, we use *weighted Hölder spaces* $C^{k,\alpha}_{\delta}$ defined so that:

Definition

• On M^* : $\phi \in C^{k,\alpha}_{\delta}(M^*)$ if $\phi \in C^{k,\alpha}_{\text{loc}}(M^*)$ and ϕ behaves 'at worst' like $|\underline{x}|^{\delta}$ near the puncture p.

Weighted Hölder spaces

Therefore, we use *weighted Hölder spaces* $C^{k,\alpha}_{\delta}$ defined so that:

Definition

- On M^* : $\phi \in C^{k,\alpha}_{\delta}(M^*)$ if $\phi \in C^{k,\alpha}_{loc}(M^*)$ and ϕ behaves 'at worst' like $|\underline{x}|^{\delta}$ near the puncture p.
- On X: ψ ∈ C^{k,α}_δ(X) if ψ ∈ C^{k,α}_{loc}(X) and ψ behaves 'at worst' like |<u>u</u>|^δ at infinity.

Weighted Hölder spaces

Therefore, we use *weighted Hölder spaces* $C^{k,\alpha}_{\delta}$ defined so that:

Definition

- On M^* : $\phi \in C^{k,\alpha}_{\delta}(M^*)$ if $\phi \in C^{k,\alpha}_{loc}(M^*)$ and ϕ behaves 'at worst' like $|\underline{x}|^{\delta}$ near the puncture p.
- On X: ψ ∈ C^{k,α}_δ(X) if ψ ∈ C^{k,α}_{loc}(X) and ψ behaves 'at worst' like |<u>u</u>|^δ at infinity.
- On M_{ε} : We decompose $f \in C^{k,\alpha}_{loc}(M_{\varepsilon})$ into $f = \gamma_1 f + \gamma_2 f$, où $\gamma_1 f \in C^{k,\alpha}_{loc}(M^*)$ and $\gamma_2 f \in C^{k,\alpha}_{loc}(X)$. Then we set

$$\|f\|_{\mathcal{C}^{k,\alpha}_{\delta}(M_{\varepsilon})} = \|\gamma_{1}f\|_{\mathcal{C}^{k,\alpha}_{\delta}(M^{*})} + \varepsilon^{-\delta}\|\gamma_{2}f\|_{\mathcal{C}^{k,\alpha}_{\delta}(X)}$$

In these spaces, the model operators have the expected behavior:

Proposition

For $0 < \delta < 1$, $0 < \alpha < 1$, we have:

In these spaces, the model operators have the expected behavior:

Proposition

For $0 < \delta < 1$, $0 < \alpha < 1$, we have:

• Let $\xi \in C^{\infty}(M)$ supported in $B(p, 2r_0)$ and equal to 1 in $B(p, r_0)$.

In these spaces, the model operators have the expected behavior:

Proposition

For 0 $<\delta<$ 1, 0 $<\alpha<$ 1, we have:

• Let $\xi \in C^{\infty}(M)$ supported in $B(p, 2r_0)$ and equal to 1 in $B(p, r_0)$. Then

$$ilde{L}_{\mathcal{M}^*}: (\mathcal{C}^{4,lpha}_{\delta}(\mathcal{M}^*) \oplus \mathsf{Vect}(\xi)) imes \mathbb{R} o \mathcal{C}^{0,lpha}_{\delta-4}(\mathcal{M}^*)$$

admits a right inverse G_1 ;

In these spaces, the model operators have the expected behavior:

Proposition

For 0 $<\delta<$ 1, 0 $<\alpha<$ 1, we have:

• Let $\xi \in C^{\infty}(M)$ supported in $B(p, 2r_0)$ and equal to 1 in $B(p, r_0)$. Then

$$ilde{L}_{\mathcal{M}^*}: (\mathcal{C}^{4,lpha}_{\delta}(\mathcal{M}^*) \oplus \operatorname{Vect}(\xi)) imes \mathbb{R} o \mathcal{C}^{0,lpha}_{\delta-4}(\mathcal{M}^*)$$

admits a right inverse G_1 ;

• $\mathbb{L}_X : \mathcal{C}^{4,\alpha}_{\delta}(X) \to \mathcal{C}^{0,\alpha}_{\delta-4}(X)$ admits a right inverse G_2 .

Gluing methods in almost-Kähler geometry └─ In the almost-Kähler framework.

Right inverse for \tilde{L}_{ε}

From there we get:

Theorem

For $0 < \delta < 1$, for ε small enough, the operator

$$ilde{\mathcal{L}}_arepsilon: \mathcal{C}^{4,lpha}_\delta(M_arepsilon) imes \mathbb{R} o \mathcal{C}^{0,lpha}_{\delta-4}(M_arepsilon)$$

admits a right inverse G_{ε} , such that $\|G_{\varepsilon}\| \leq \varepsilon^{-\delta\beta}$, with $0 < \beta < 1$.

Outline of proof: We glue together G_1 and G_2 into an 'approximate right inverse': for $f \in C^{0,\alpha}_{\delta-4}(M_{\varepsilon})$, se set

$$ilde{\mathcal{G}}_arepsilon(f) = \zeta_1 \mathcal{G}_1(\gamma_1 f) + \zeta_2 \mathcal{G}_2(\gamma_2 f).$$

Outline of proof: We glue together G_1 and G_2 into an 'approximate right inverse': for $f \in C^{0,\alpha}_{\delta-4}(M_{\varepsilon})$, se set

$$\widetilde{G}_{\varepsilon}(f) = \zeta_1 G_1(\gamma_1 f) + \zeta_2 G_2(\gamma_2 f).$$

Then we show that:

$$\|\tilde{L}_{\varepsilon}\circ\tilde{G}_{\varepsilon}-I\|\xrightarrow{\varepsilon\to 0} 0.$$

Outline of proof: We glue together G_1 and G_2 into an 'approximate right inverse': for $f \in C^{0,\alpha}_{\delta-4}(M_{\varepsilon})$, se set

$$\widetilde{G}_{\varepsilon}(f) = \zeta_1 G_1(\gamma_1 f) + \zeta_2 G_2(\gamma_2 f).$$

Then we show that:

$$\|\widetilde{L}_{\varepsilon}\circ\widetilde{G}_{\varepsilon}-I\|\xrightarrow{\varepsilon\to 0}0.$$

Thus, $G_{\varepsilon} := \tilde{G}_{\varepsilon} \circ (\tilde{L}_{\varepsilon} \circ \tilde{G}_{\varepsilon})^{-1}$ is a genuine right inverse for \tilde{L}_{ε} .

1 Calabi's program.

2 Gluing in Kähler geometry: an overview.

3 In the almost-Kähler framework.

4 Hamiltonian stationary spheres.

Definition. Euler-Lagrange equation.

Definition

Let (V, ω, J, g) be an almost-Kähler manifold. A Lagrangian submanifold L of V is *Hamiltonian-stationary* if

$$\frac{d}{ds}_{|s=0} \operatorname{Vol}_g(\exp(sX_F)(L)) = 0$$

for any $F \in \mathcal{C}^{\infty}(L)$.

Definition. Euler-Lagrange equation.

Definition

Let (V, ω, J, g) be an almost-Kähler manifold. A Lagrangian submanifold L of V is Hamiltonian-stationary if

$$\frac{d}{ds}_{|s=0} \operatorname{Vol}_g(\exp(sX_F)(L)) = 0$$

for any $F \in \mathcal{C}^{\infty}(L)$.

Let H be the mean curvature vector field of L. We define the Maslov-form $\alpha := H \,\lrcorner\, \omega$.

Then the Euler-Lagrange equation associated to the variational problem is

$$\delta \alpha = 0.$$

Construction of Hamiltonian-stationary spheres.

In our setting, we essentially obtained a sympectic manifold $(\tilde{M}, \tilde{\omega})$ endowed with

- a Lagrangian sphere S;
- a family of metrics with constant Hermitian scalar curvature $(\tilde{J_{\varepsilon}}, \tilde{g}_{\varepsilon})$.

Construction of Hamiltonian-stationary spheres.

In our setting, we essentially obtained a sympectic manifold $(\tilde{M}, \tilde{\omega})$ endowed with

- a Lagrangian sphere S;
- a family of metrics with constant Hermitian scalar curvature $(\tilde{J_{\varepsilon}}, \tilde{g}_{\varepsilon})$.

To this family of metrics, we may add the approximate solution $(\tilde{J_0}, \tilde{g_0})$. S is minimal, thus Hamiltonian-stationary, for this metric.

Construction of Hamiltonian-stationary spheres.

In our setting, we essentially obtained a sympectic manifold $(\tilde{M}, \tilde{\omega})$ endowed with

- a Lagrangian sphere S;
- a family of metrics with constant Hermitian scalar curvature $(\tilde{J_{\varepsilon}}, \tilde{g}_{\varepsilon})$.

To this family of metrics, we may add the approximate solution $(\tilde{J_0}, \tilde{g_0})$. S is minimal, thus Hamiltonian-stationary, for this metric.

Question: For ε small enough, can we find a function F_{ε} such that $\exp(X_{F_{\varepsilon}})(S)$ be Hamiltonian-stationary for $(\tilde{g}_{\varepsilon}, \tilde{J}_{\varepsilon})$?

Answer: Yes ! The idea is to study the operator

$$egin{aligned} B : \mathcal{C}^{2,lpha}(\mathcal{AC}_{\widetilde{\omega}}) imes \mathcal{C}^{4,lpha}(S) o \mathcal{C}^{0,lpha}(S) \ (J,F) \mapsto \delta_{J,F} lpha_{J,F} \end{aligned}$$

Answer: Yes ! The idea is to study the operator

$$B: \mathcal{C}^{2,\alpha}(\mathcal{AC}_{\tilde{\omega}}) \times \mathcal{C}^{4,\alpha}(S) \to \mathcal{C}^{0,\alpha}(S)$$
$$(J,F) \mapsto \delta_{J,F}\alpha_{J,F}$$

We have $B(\widetilde{J}_0,0)=0$.

On the other hand, the linearisation of B at $(\tilde{J}_0, 0)$ with respect to the second variable is $\Delta^2_{\tilde{g}_0}$ (Oh's formula).

This allows us to use the Implicit Function Theorem.

Conclusion and perspectives

Conclusion

Through the gluing construction, we have obtained a symplectic manifold $(\tilde{M},\tilde{\omega})$ endowed with

- a family of metrics with constant Hermitian scalar curvature $(\tilde{J_{\varepsilon}}, \tilde{g}_{\varepsilon})$.
- a family of Lagrangian spheres S_{ε} that is Hamiltonian-stationary for \tilde{g}_{ε} .

Conclusion and perspectives

Conclusion

Through the gluing construction, we have obtained a symplectic manifold $(\tilde{M},\tilde{\omega})$ endowed with

- a family of metrics with constant Hermitian scalar curvature $(\tilde{J_{\varepsilon}}, \tilde{g}_{\varepsilon})$.
- a family of Lagrangian spheres S_ε that is Hamiltonian-stationary for g̃_ε.

Perpectives

- Other types of singularities;
- Higher dimensions, for instance smoothings of double points;
- Can the blow-up construction be made in a way to preserve the constant curvature condition ?

Gluing methods in almost-Kähler geometry

Hamiltonian stationary spheres.

Thank you for your attention !