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Gluing methods in almost-Kähler geometry

Calabi's program.

Question: Given a smooth compact manifold, is there a

`privileged' Riemannian metric ?

Inspiration: Uniformization theorem for Riemann surfaces

Let (Σ2, J) be a compact Riemann surface. There is a Riemannian

metric g on Σ compatible with J, with constant Gauss curvature.

Moreover, this metric is unique (up to isometries) if we set

Volg (Σ) = 1.

Framework: (almost)-Kähler manifolds

`Privileged' metrics = constant scalar curvature metrics in a

�xed Kähler class.
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Gluing methods in almost-Kähler geometry

Calabi's program.

The existence problem is a di�cult one:

Obstructions related to the existence of holomorphic vector

�elds.

Tian-Yau-Donaldson conjecture: hamiltonian action on the

space of (almost-)complex structures compatible with the

Kähler form. The moment map is then the (normalized) scalar

curvature s(ω)− s̄.

Recent works by Chen and Cheng.

Gluing methods are a way of obtaining explicit examples.

Examples: Works of Arezzo and Pacard, Szekelyhidi.
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Gluing methods in almost-Kähler geometry

Gluing in Kähler geometry: an overview.

Building block 1: Orbifold

(M, JM , ωM) a compact Kähler orbifold, with a single isolated

singularity p modelled on Cm/Γ, where Γ ⊂ U(m) only �xes 0.

Asumptions:

(M, JM) admits no non-trivial holomorphic vector �eld;

(M, JM , ωM) has constant scalar curvature.

From the Kähler property, we have holomorphic coordinates around

p:
z : p 3 U → U ′ ⊂ Cm/Γ

such that

ωM = ωeucl + O(|z |2).
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Gluing methods in almost-Kähler geometry

Gluing in Kähler geometry: an overview.

Building block 2: ALE manifold

Let (X , JX , ωX ) be an Asymplotically Locally Euclidean resolution

(ALE) of Cm/Γ.

From the ALE property, we have holomorphic coordinates outside a

compact:

u : X \ K → (Cm \ B(0,R))/Γ

such that

ωX = ωeucl + O(|u|2−2m).

We assume that (X , JX , ωX ) has zero scalar curvature.
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Gluing methods in almost-Kähler geometry

Gluing in Kähler geometry: an overview.

The 'connected sum'

Using these coordinates, we identify a small `ring' around p ∈ M to

a large region in X via a homothety.

Thus we obtain a complex smooth manifold Mε.

We endow it with a Kähler form by joining Kähler potentials for ωM

and ωX by cut-o� functions.

Then, the problem is to �nd f ∈ C∞(Mε) such that

s(ωε + ddc f ) = λ.
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

De�nition

An almost-Kähler manifold is a symplectic manifold (V , ω)
endowed with a compatible almost-complex structure J.

We denote ACω the set of almost-complex structures on V that are

compatible with ω.

Previous works extending the Calabi program to almost-Kähler

manifolds:

Lejmi, Keller and Lejmi: study of Calabi's functional, Futaki's

invariant

Weinkove: Calabi-Yau equation.

Question: Could we use gluing methods to obtain privileged

metrics on almost-Kähler manifolds ?
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

We use more general ALE models (X , JX , ωX ):

u : X \ K → Cm/Γ

di�eomorphism outside a compact set, such that

ωX = ωeucl + O(|u|2−2m)

JX = Jeucl + O(|u|2−2m).

In other words, we consider complex deformations of resolutions.

Such non-trivial resolutions only exist in complex dimension 2

(Hein, Radeasconu, Suvaina).
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

Building blocks

(M, JM , ωM) a constant scalar curvature Kähler orbifold

surface, with a single singularity p modelled on C2/Z2. We

assume (M, JM) admits no nontrivial holomorphic vector �eld.

(X ' T ∗S2, JX , ωX ) ALE Kähler surface asymptotic to C2/Z2.

We explicitly obtain the ALE metric by solving Ric(ddcϕ) = 0,

with ϕ = f (|z |2), on smoothings

{z21 + z22 + z23 = ε} ⊂ C3

of

C2/Z2 ' {z21 + z22 + z23 = 0}.

The Riemannian metric gX thus derived is Eguchi-Hanson's.

The complex structure inherited from C3 veri�es

JX − Jeucl = O(|u|−4).
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

Generalized connected sum.

We work in Darboux charts.

On the orbifold: an equivariant version of Darboux's theorem

near p gives

x : p 3 U → U ′ ⊂ C2/Z2

such that ωM coincides with ωeucl . Moreover

JM = Jeucl + O(|x |2).

On the ALE surface: Performing an explicit change of

variables, we get

u : X \ K → (C2 \ B(0,R))/Z2

such that ωX coincides with ω0. Moreover, we recover

JX − Jeucl = O(|u|−4).
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

Using these charts to perform the connected sum construction gives

us a family of symplectic manifolds (Mε, ωε).

Remarks: 1 The (Mε, ωε) are all symplectically equivalent to

the same (M̃, ω̃);

2 The zero section of X ' T ∗S2 provides a

Lagrangian sphere S in (M̃, ω̃).
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

We want to

endow Mε with an almost complex structure compatible with

ωε.

perturb this structure into a 'canonical' one.
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

Almost complex structures on (Mε, ωε).

We use the following description of ACω on a symplectic manifold

(V , ω).

Theorem

Let (V , ω) be a symplectic manifold. We set

End(TV , ω) = {a ∈ End(TV ), ω(aX ,Y ) + ω(X , aY ) = 0},

the Lie algebra of automorphisms of TV that preserve ω.
Then, if J1, J2 ∈ ACω, there exists a ∈ C∞(End(TV , ω)) such that

J2 = exp(a)J1 exp(−a).
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

Using this description and suitable cut-o� functions, we get

an a.c.s. Jrε on M, compatible with ωM , such that

Jrε =

{
J0 on {|x | ≤ 2rε}
JM on {|x | ≥ 4rε}

an a.c.s. JRε on X , compatible with ωX , such that

JRε =

{
JX on {|u| ≤ Rε}
J0 on {|u| ≥ 2Rε}

Gluing those together, we obtain an almost-Kähler manifold

(Mε, ωε, Jε, gε).

Remarks: 1 Jε is not integrable, but NJε is supported in the

gluing region {rε ≤ |x | ≤ 4rε}, and controlled in

suitable norms by a positive power of ε.

2 The Lagrangian sphere Sε is minimal for gε.
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

Perturbation of the approximate solution

Problem: For f ∈ C∞(Mε), the form

ωf := ωε + dJεdf

is not Jε-invariant.

Solution: Fix ωε and move Jε in ACωε .
To f ∈ C∞(Mε), we associate the Hamiltonian vector �eld Xf .

Then, af := LXf
Jε ∈ C∞(End(TMε, ωε))

and we set

Jf := exp(−af )Jε exp(af ).
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

The equation

We want to solve

s∇(Jf ) = sM + λ, (1)

where s∇ is the Hermitian scalar curvature of (Mε, Jf , ωε).

The Hermitian Ricci curvature ρ∇(Jf ) is the curvature of the

Chern connection on the anticanonical bundle K ∗Jf ;

The Hermitian scalar curvature is its trace s∇(Jf ) = Λρ∇(Jf ).

The equation (1) is a fourth order PDE on f .
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

Strategy.

We imitate the proof of the Inverse Function Theorem. We

linearise:

Lε(f ) :=
d

dt |t=0
s∇(Jtf ),

thus

s∇(Jf ) = s∇(Jε) + Lε(f ) + Qε(f ).

The linearised operator is given by

Lεf = −∆2
gεf + 2δgεRicgε(gradgεf , ·) + Eεf

= LMεf + Eεf ,

where L is the Lichnerowicz operator on Mε, and the error term Eε
is small in suitable norms, with coe�cients comparable to the

Nijenhuis tensor NJε .
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

The equation s∇(Jf ) = sM + λ thus rewrites

Lε(f ) + λ = sM − s∇(Jε)− Qε(f ).

We need to:

1 Build a right inverse L̃ε(f , λ) = Lεf + λ in suitable Banach

spaces,

2 Obtain an estimate of s∇(Jε)− sM ,

3 Control the non-linear term Qε.
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

Right inverse of the linearisation.

Idea: Compare L̃ε to the model operators:

L̃M∗ : (f , λ) 7→ LM∗f + λ on the punctured manifold

M∗ = M \ {p};
LX : f 7→ LX f on the ALE surface X .

These operators are de�ned on noncompact manifolds: in terms of

regularity property, they do not behave well in usual Hölder spaces

Ck,α(M∗), Ck,α(X ) (ex: Schauder estimates are lost).
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

Weighted Hölder spaces

Therefore, we use weighted Hölder spaces Ck,αδ de�ned so that:

De�nition

On M∗: φ ∈ Ck,αδ (M∗) if φ ∈ Ck,αloc (M∗) and φ behaves `at

worst' like |x |δ near the puncture p.

On X : ψ ∈ Ck,αδ (X ) if ψ ∈ Ck,αloc (X ) and ψ behaves `at worst'

like |u|δ at in�nity.
On Mε: We decompose f ∈ Ck,αloc (Mε) into f = γ1f + γ2f , où

γ1f ∈ Ck,αloc (M∗) and γ2f ∈ Ck,αloc (X ). Then we set

‖f ‖Ck,αδ (Mε)
= ‖γ1f ‖Ck,αδ (M∗)

+ ε−δ‖γ2f ‖Ck,αδ (X )
.
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

In these spaces, the model operators have the expected behavior:

Proposition

For 0 < δ < 1, 0 < α < 1, we have:

Let ξ ∈ C∞(M) supported in B(p, 2r0) and equal to 1 in

B(p, r0). Then

L̃M∗ : (C4,αδ (M∗)⊕ Vect(ξ))× R→ C0,αδ−4(M∗)

admits a right inverse G1;

LX : C4,αδ (X )→ C0,αδ−4(X ) admits a right inverse G2.
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

Right inverse for L̃ε

From there we get:

Theorem

For 0 < δ < 1, for ε small enough, the operator

L̃ε : C4,αδ (Mε)× R→ C0,αδ−4(Mε)

admits a right inverse Gε, such that ‖Gε‖ ≤ ε−δβ , with 0 < β < 1.
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Gluing methods in almost-Kähler geometry

In the almost-Kähler framework.

Outline of proof: We glue together G1 and G2 into an

`approximate right inverse': for f ∈ C0,αδ−4(Mε), se set

G̃ε(f ) = ζ1G1(γ1f ) + ζ2G2(γ2f ).

Then we show that:

‖L̃ε ◦ G̃ε − I‖ ε→0−−−→ 0.

Thus, Gε := G̃ε ◦ (L̃ε ◦ G̃ε)−1 is a genuine right inverse for L̃ε.
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Hamiltonian stationary spheres.

1 Calabi's program.

2 Gluing in Kähler geometry: an overview.

3 In the almost-Kähler framework.

4 Hamiltonian stationary spheres.



Gluing methods in almost-Kähler geometry

Hamiltonian stationary spheres.

De�nition. Euler-Lagrange equation.

De�nition

Let (V , ω, J, g) be an almost-Kähler manifold. A Lagrangian

submanifold L of V is Hamiltonian-stationary if

d

ds |s=0
Volg (exp(sXF )(L)) = 0

for any F ∈ C∞(L).

Let H be the mean curvature vector �eld of L. We de�ne the

Maslov-form α := H y ω.
Then the Euler-Lagrange equation associated to the variational

problem is

δα = 0.
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Gluing methods in almost-Kähler geometry

Hamiltonian stationary spheres.

Construction of Hamiltonian-stationary spheres.

In our setting, we essentially obtained a sympectic manifold (M̃, ω̃)
endowed with

a Lagrangian sphere S ;

a family of metrics with constant Hermitian scalar curvature

(J̃ε, g̃ε).

To this family of metrics, we may add the approximate solution

(J̃0, g̃0). S is minimal, thus Hamiltonian-stationary, for this metric.

Question: For ε small enough, can we �nd a function Fε such that

exp(XFε)(S) be Hamiltonian-stationary for (g̃ε, J̃ε) ?
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Gluing methods in almost-Kähler geometry

Hamiltonian stationary spheres.

Answer: Yes ! The idea is to study the operator

B : C2,α(ACω̃)× C4,α(S)→ C0,α(S)

(J,F ) 7→ δJ,FαJ,F

We have B(J̃0, 0) = 0.

On the other hand, the linearisation of B at (J̃0, 0) with respect to

the second variable is ∆2
g̃0

(Oh's formula).

This allows us to use the Implicit Function Theorem.
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Gluing methods in almost-Kähler geometry

Hamiltonian stationary spheres.

Conclusion and perspectives

Conclusion

Through the gluing construction, we have obtained a symplectic

manifold (M̃, ω̃) endowed with

a family of metrics with constant Hermitian scalar curvature

(J̃ε, g̃ε).

a family of Lagrangian spheres Sε that is
Hamiltonian-stationary for g̃ε.

Perpectives

Other types of singularities;

Higher dimensions, for instance smoothings of double points;

Can the blow-up construction be made in a way to preserve

the constant curvature condition ?
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Gluing methods in almost-Kähler geometry

Hamiltonian stationary spheres.

Thank you for your attention !
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