Continuité dans les espaces vectoriels normés - Méthodes

Continuité d'une application entre evn : Soit E, F deux e.v.n. \mathbb{R} . Une application $f: X \subset E \to F$ est une continue en $x_0 \in X$ ssi, pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que $B_X(x_0, \delta) \subset f^{-1}(B_F(f(x_0), \varepsilon)$. Autrement dit, pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que

$$||x - x_0||_E < \delta \Rightarrow ||f(x) - f(x_0)||_F < \varepsilon;$$

c'est la définition habituelle, reformulée en termes de boules.

Caractérisation par les suites : f est continue en x_0 ssi, pour toute suite $(x_n) \in E^{\mathbb{N}}$,

$$x_n \to x_0 \Leftrightarrow f(x_n) \to f(x_0)$$

Ainsi, pour montrer qu'une fonction f n'est pas continue en x_0 , on peut chercher une suite (x_n) telle que $f(x_n)$ ne converge pas vers $f(x_0)$.

Fonctions continues et topologie : Soit $f: X \subset E \rightarrow F$ une fonction entre deux e.v.n. Alors :

- f est continue sur X ssi pour tout ouvert \mathcal{O} de F, $f^{-1}(\mathcal{O})$ est un ouvert de X;
- f est continue sur X ssi pour tout fermé \mathcal{F} de F, $f^{-1}(\mathcal{F})$ est un fermé de X;

Ainsi, pour montrer qu'un sous-ensemble d'un espace vectoriel est un ouvert (resp. un fermé), on peut essayer de l'écrire comme image réciproque d'un ouvert (resp. un fermé) par une application continue.

Exemple:

$$\{(x,y) \in \mathbb{R}^2, x^2 + y^5 \le 1\} = f^{-1}(] - \infty, 1]),$$

où $f: \mathbb{R}^2 \to \mathbb{R}$ est l'application continue $f(x,y) = x^2 + y^5$. C'est donc un fermé de \mathbb{R}^2 .

On a aussi, pour $f: K \subset E \to F$,

$$\begin{cases} f \text{ continue} \\ K \text{ compact} \end{cases} \Rightarrow f(K) \text{ compact}$$

Application: Dans le cas où $F = \mathbb{R}$, f(K) est alors un fermé borné de \mathbb{R} . En particulier, f est bornée sur K et atteint ses bornes: il existe $x_{\min}, x_{\max} \in K$ tels que

$$\forall x \in K, f(x_{\min}) \le f(x) \le f(x_{\max})$$

Fonctions Lipschitziennes : Une fonction $f: X \subset E \to F$ est lipschitzienne s'il existe c>0 tel que

$$\forall x, y \in X^2, ||f(x) - f(y)||_E \le c||x - y||_E.$$

Toute application lipschitzienne est continue. Si c < 1, on dit que f est contractante.

Applications linéaires continues : Soit $f:E\to F$ une application linéaire. Alors f est continue ssi il existe c>0 tel que

$$\forall x \in E, \ \|f(x)\|_F \le c\|x\|_E.$$

Méthodes:

- Pour montrer qu'une application linéaire est continue, on cherche à majorer $||f(x)||_F$ en fonction de $||x||_E$.
- Pour montrer qu'une application linéaire n'est pas continue, on peut chercher une suite $(u_n)_n$ de $E^{\mathbb{N}}$ telle que $||u_n|| = 1$ et $||f(u_n)|| \to \infty$.

De plus, si E est de dimension finie, toute application linéaire $E \to F$ est continue (même si F est de dimension infinie!)

L'e.v.n. $\mathcal{L}(E,F)$: On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires CONTINUES $E \to F$. On le munit d'une norme en posant, pour $F \in \mathcal{L}(E,F)$:

$$||f||_{\mathcal{L}(E,F)} = \sup_{\|x\|_E = 1} ||f(x)||_F = \sup_{x \neq 0} \frac{||f(x)||_F}{\|x\|_E}.$$

Pour montrer qu'une application linéaire f est continue et calculer sa norme, on procède en deux étapes :

- 1. On montre qu'il existe c > 0 telle que $\forall x \in E$, $||f(x)||_F \le c||x||_E$. On en déduit que f est continue et que $||f||_{\mathcal{L}(E,F)} \le c$.
- 2. On montre que $||f||_F \geq c$: pour cela, on cherche $x \in E$ tel que $||x||_E = 1$ et $||f(x)||_F = c$. Si on ne trouve pas de tel x, on cherche une suite x_n telle que $||x_n|| = 1$ et $||f(x_n)|| \geq c - \frac{1}{n}$. On a alors $||f||_F \geq c - \frac{1}{n}$ pour tout n, donc $||f||_F \geq c$.

Propriétés :

- $||Id_E||_{\mathcal{L}(E)} = 1$
- $||f \circ g|| \le ||f|| \, ||g||$. En particulier, $||f^n|| \le ||f||^n$.
- Si F est complet, alors $\mathcal{L}(E, F)$ est complet.

Séries d'applications linéaires : Si $\mathcal{L}(E, F)$ est complet, alors, pour toute suite (f_n) de $\mathcal{L}(E, F)$,

$$\sum_{n} ||f_{n}|| \text{ converge} \Rightarrow \sum_{n} f_{n} \text{ converge dans } \mathcal{L}(E, F)$$

Par exemple,

- Exponentielle: Pour tout $f \in \mathcal{L}(E)$, $\sum_{n=1}^{\infty} \frac{f^n}{n!}$ converge. On note cette application linéaire $\exp(f)$.
- Séries "géométriques" : Si $||f||_{\mathcal{L}(E)} < 1$, la série $\sum f^n$ converge et sa somme est $(Id_E f)^{-1}$.