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Gluing in almost Kahler geometry

Objective

Objective: Endow a symplectic manifold (Mε, ωε), obtained by a
‘connected sum’ construction from a Kähler orbifold M and an ALE
manifold X , with an almost-Kähler metric of constant hermitian
scalar curvature.

Question: Can we adapt the gluing methods developed by Arezzo
and Pacard to the case where X is not a resolution of the
singularities of M, but a complex deformation of one ?
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Building blocks

Building blocks: Orbifold

Let M be a compact Kähler orbifold of complex dimension 2 with

isolated singularities of type C
2
�Z2

:

pi

' C2/Z2

(M,ωM , JM , gM)

Assume that (M, gM) has constant scalar curvature, and that there
are no nontrivial holomorphic vector fields on M.
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Building blocks: ALE manifold

On the other hand let X be an ALE Kähler manifold, with zero
scalar curvature and asymptotic to C

2
�Z2

:

with JX , gX verifying, in ALE
coordinates:

∂k(JX − J0) = O(|x |−4−k)

∂k(gX − g0) = O(|x |−4−k)
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Example: The Stenzel structure on T ∗S2:
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Generalized connected sum

The ‘connected’ sum Mε is constructed by choosing a gluing
parameter ε� 1 and replacing an rε-neighborhood of each pi by a
suitably scaled-down ‘ball’ of radius rε

ε in X .

Mε



Gluing in almost Kahler geometry

Building blocks

We want
to endow Mε with an almost-Kähler metric
to perturb this metric into a canonical one.
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Steps of the construction

Problem 1: The complex structures on X and M do not coincide.
We cannot perform the connected sum in holomorphic charts !

Solution: We work instead in charts in which the Kähler forms of
M and X respectively agree with the standard symplectic form

on C
2
�Z2

.

On the orbifold M: equivariant Darboux theorem.
On X : adaptation of Moser’s trick to obtain a Darboux chart
outside a compact.

⇒ Mε is naturally a symplectic manifold (Mε, ωε).
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Steps of the construction

Problem 2: How to endow Mε with almost-complex structures
(a.c.s) compatible with ωε ?

Solution: We would like to glue together the complex structures
JM on M and JX on X .
We use a description of a.c.s compatible with a given symplectic
form:

Theorem

Let (V , ω) be a symplectic manifold. The action by conjugation of
the ‘Lie group’ Gω of automorphisms of TM that preserve ω on
ACω is transitive. In particular, given J1 and J2 in ACω, there is an
a in its ‘Lie algebra’ Lω such that

J2 = exp(a)J1 exp(−a);

moreover, the section A is unique if we assume it anticommutes
with J1 and J2.
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Steps of the construction

Cutoff on the orbifold: JM and J0 are both compatible with ωM

in the Darboux charts. Thus there is an endomorphism a such that

JM = exp(a)J0 exp(−a)

Define the cutoff χ1

Set:
Jrε := exp(χ1a)J0 exp(−χ1a).
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Steps of the construction

Cutoff on the ALE manifold: Similarly, JX and J0 are compatible
with ωX outside a compact set, so we have

JX = exp(b)J0 exp(−b)

Define χ2:

Set:

JRε = exp(χ2b)J0 exp(−χ2b).
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Steps of the construction

We get Jε on Mε by identifying

the region {r = 2rε} on M, the region {r = 2Rε} on X

⇒ (Mε, Jε, ωε) is an almost-Kähler manifold.
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Steps of the construction

Problem 3: How can we associate a compatible a.c.s. Jf to a
smooth function f on Mε ?

Solution: To f we associate the Hamiltonian vector field Xf ,
which induces LXf

Jε ∈ Lωε . Then we set

Jf = exp(−LXf
Jε) Jε exp(LXf

Jε).



Gluing in almost Kahler geometry

Steps of the construction

Problem 3: How can we associate a compatible a.c.s. Jf to a
smooth function f on Mε ?

Solution: To f we associate the Hamiltonian vector field Xf ,

which induces LXf
Jε ∈ Lωε . Then we set

Jf = exp(−LXf
Jε) Jε exp(LXf

Jε).



Gluing in almost Kahler geometry

Steps of the construction

Problem 3: How can we associate a compatible a.c.s. Jf to a
smooth function f on Mε ?

Solution: To f we associate the Hamiltonian vector field Xf ,
which induces LXf

Jε ∈ Lωε . Then we set

Jf = exp(−LXf
Jε) Jε exp(LXf

Jε).



Gluing in almost Kahler geometry

Steps of the construction

Problem 4: What is the ‘right’ notion of ‘canonical metric’ in this
context ?

Solution: The Riemannian scalar curvature does not retain the
nice properties it has on a Kähler manifold.
Instead, we work with the Hermitian scalar curvature s∇, which is
the trace of the curvature of the Chern connection on the
anticanonical line bundle K ∗Jf ;

s∇ depends on the almost complex structure and coincide with the
Riemannian scalar curvature when the manifold is Kähler.

Thus we want to solve

s∇(Jf ) = s(M) + λ, (?)

for f in a suitable functional space.
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Steps of the construction

Problem 5: How do we solve the equation (?) ?

Solution: With an analogue of the Inverse Function Theorem.

Theorem

Let F : B1 → B2 be a bounded differentiable operator between
Banach spaces. In a neighborhood of 0 ∈ B1,

F (x) = F (0) + F ′(0)x + Q(x).

Assume
1 ‖Q(x)− Q(y)‖ ≤ C (‖x‖+ ‖y‖) ‖x − y‖;
2 ‖F (0)‖B2 � 1;
3 F ′(0) is an isomorphism with bounded right inverse.

Then the equation F (x) = 0 admits a unique solution in a small
ball B(0, r0) ⊂ B1.
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Steps of the construction

We linearise the equation:

s∇(Jf ) = s∇(Jε) + Lεf + Nε(f );

then we need to
1 Ensure that s∇(Jε) is close enough to s(M),
2 Find a right inverse of the linearised operator Lε,
3 Control the nonlinear term Nε.
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Problem 6: Who is the linearised operator ?

Solution: It can be rewritten

Lεf = −∆2f + 2δRic(gradgεf ) + Eεf

= LMεf + Eεf ,

where L is the Lichnerowicz operator on Mε, and the error term Eε

is small, with coefficients comparable to the Nijenhuis tensor of Jε.

We find a right inverse to Lε by gluing together right inverses of
the Lichnerowicz operators on the model spaces: the punctured
orbifold M∗ and the ALE space X . The model operators have nice
mapping properties provided we work in suitable functional spaces
(namely, weighted Hölder spaces).
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Further perspectives

Higher dimensions ?

Theorem [Hein, Radeasconu and Suvaina 2016]

If n ≥ 3, every ALE Kähler manifold asymptotic to Cn/G is
biholomorphic to a resolution of the isolated singularity Cn/G .

Other types of singularities ?
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Thank you for your attention
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